Medvedev and Muchnik Degrees of Nonempty Π 01 Subsets of 2 ω

نویسنده

  • Stephen G. Simpson
چکیده

This is a report for my presentation at the upcoming meeting on Berechenbarkeitstheorie (“Computability Theory”), Oberwolfach, January 21–27, 2001. We use 2 to denote the space of infinite sequences of 0’s and 1’s. For X, Y ∈ 2, X ≤T Y means that X is Turing reducible to Y . For P,Q ⊆ 2 we say that P is Muchnik reducible to Q, abbreviated P ≤w Q, if for all Y ∈ Q there exists X ∈ P such that X ≤T Y . We say that P is Medvedev reducible to Q, abbreviated P ≤M Q, if there exists a recursive functional Φ : Q→ P . Note that P ≤M Q implies P ≤w Q, but not conversely. Sorbi [13] gives a useful survey of Medvedev and Muchnik degrees of arbitrary subsets of 2. Here we initiate a study of Medvedev and Muchnik degrees of nonempty Π1 subsets of 2 . Theorems 1 and 2 below have been proved in collaboration with my Ph. D. student Stephen Binns. Let P be the set of nonempty Π1 subsets of 2. Let PM (respectively Pw) be the set of Medvedev (respectively Muchnik) degrees of members of P, ordered by Medvedev (respectively Muchnik) reducibility. We say that P ∈ P is Medvedev complete (respectively Muchnik complete) if P ≥M Q (respectively P ≥w Q) for all Q ∈ P. For example, the set of complete extensions of Peano Arithmetic is Medvedev complete. Clearly every Medvedev

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inside the Muchnik Degrees II: The Degree Structures induced by the Arithmetical Hierarchy of Countably Continuous Functions

It is known that infinitely many Medvedev degrees exist inside the Muchnik degree of any nontrivial Π1 subset of Cantor space. We shed light on the fine structures inside these Muchnik degrees related to learnability and piecewise computability. As for nonempty Π1 subsets of Cantor space, we show the existence of a finite-∆2-piecewise degree containing infinitely many finite-(Π 0 1)2-piecewise ...

متن کامل

Medvedev degrees of 2-dimensional subshifts of finite type

In this paper we apply some fundamental concepts and results from recursion theory in order to obtain an apparently new example in symbolic dynamics. Two sets X and Y are said to be Medvedev equivalent if there exist partial computable functionals from X into Y and vice versa. The Medvedev degree of X is the equivalence class of X under Medvedev equivalence. There is an extensive recursion-theo...

متن کامل

Embeddings into the Medvedev and Muchnik lattices of Π1 classes

Let Pw and PM be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 subsets of 2 , under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of Pw. We show that many countable distributive lattices are lattice-embeddable below any non-zero element of PM .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001